选取2023年1月1日—28日上海佘山地震台、北京白家疃地震台和湖北恩施地震台连续波形垂直分向记录,分析不同城市人为噪声差异性,结果表明:在研究时段,对于各台每周背景噪声水平结果,上海佘山台和北京白家疃台周五、湖北恩施台周三背景噪声水平偏低;在4—14 Hz频段,不同区域地震背景噪声春节期间显著下降,其中佘山台均方根位移下降约0.4 nm,白家疃台均方根位移下降约0.2 nm,恩施台均方根位移下降约3.5 nm;在0.1—0.2 Hz频段,远震事件造成归一化位移的显著变化,其位移变化持续时间可直观反映地震持续时间,进而反映各地震的大小差异。对于人类活动对台站背景噪声的影响,分析认为:3个台站中,北京白家疃台高频背景噪声干扰最小;f= 2 Hz,上海佘山台背景噪声水平偏高;机械化频率f≥5 Hz,湖北恩施台背景噪声水平更高。
Selecting continuous waveforms of vertical component from SSE, BJT, and ENS seismic stations from January 1st to 28th, 2023, we analyzed the differences in human-induced noise in different cities. The results show that in the study period the seismic ambient noise level of SSE and BJT is lower on Friday and the level of ENS is lower on Wednesday; in the frequency range of 4-14 Hz, the seismic ambient noise level of different regions significantly decreased during the Spring Festival, with the root-mean-square displacement of SSE seismic station decreasing by about 0.4 nm, the root-mean-square displacement of BJT seismic station decreasing by about 0.2 nm, and the root-mean-square displacement of ENS seismic station decreasing by about 3.5 nm; in the frequency range of 0.1-0.2 Hz, the significant change in normalized displacement caused by distant earthquake events can be observed, and the duration of displacement change can intuitively reflect the duration of the earthquake, thereby reflecting the differences in the magnitude of the earthquakes. For the influence of human activities on the seismic ambient noise of the stations, the analysis shows that: among the three stations, BJT seismic station has the least high-frequency seismic ambient noise interference; at f= 2 Hz, the seismic ambient noise level of SSE seismic station is higher; at mechanical frequencyf≥5 Hz, the seismic ambient noise level of ENS seismic station is higher.
2024,45(5): 80-88 收稿日期:2024-7-11
DOI:10.3969/j.issn.1003-3246.2024.05.012
作者简介:孙冬军(1989-),男,工程师,主要从事地震数据处理工作。E-mail:sundongjunvip@163.com
参考文献:
齐诚,陈棋福,陈颙. 利用背景噪声进行地震成像的新方法[J]. 地球物理学进展,2007,22(3):771-777.
朱昕晖,方孙珂,林建民. 基于地震学的台风监测研究[J]. 地震学报,2023,45(3):411-430.
Ardhuin F, Stutzmann E, Schimmel M, et al. Ocean wave sources of seismic noise[J]. Journal of Geophysical Research, 2011, 116(C9): C09004.
Aster R C, Mcnamara D E, Bromirski P D. Multidecadal climate-induced variability in microseisms[J]. Seismological Research Letters, 2008, 79(2): 194-202.
Barruol G, Davy C, Fontaine F R, et al. Monitoring austral and cyclonic swells in the “Iles Eparses” (Mozambique channel) from microseismic noise[J]. Acta Oecologica, 2016, 72: 120-128.
Bromirski P D, Flick R E, Graham N. Ocean wave height determined from inland seismometer data: Implications for investigating wave climate changes in the NE Pacific[J]. Journal of Geophysical Research: Oceans, 1999, 104(C9): 20 753-20 766.
Bromirski P D, Duennebier F K. The near-coastal microseism spectrum: spatial and temporal wave climate relationships[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B8): ESE 5-1-ESE 5-20.
Chang J P, de Ridder S A L, Biondi B L. High-frequency Rayleigh-wave tomography using traffic noise from Long Beach, California[J]. Geophysics, 2016, 81(2): B43-B53.
Chen X H, Tian D D, Wen L X. Microseismic sources during Hurricane Sandy[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(9): 6 386-6 403.
Davy C, Barruol G, Fontaine F R, et al. Tracking major storms from microseismic and hydroacoustic observations on the seafloor[J]. Geophysical Research Letters, 2014, 41(24): 8 825-8 831.
Ebeling C W, Stein S. Seismological identification and characterization of a large hurricane[J]. Bulletin of the Seismological Society of America, 2011, 101(1): 399-403.
Feng J K, Yao H J, Wang Y, et al. Segregated oceanic crust trapped at the bottom mantle transition zone revealed from ambient noise interferometry[J]. Nature Communications, 2021, 12(1): 2 531.
Ferretti G, Zunino A, Scafidi D, et al. On microseisms recorded near the Ligurian coast (Italy) and their relationship with sea wave height[J]. Geophysical Journal International, 2013, 194(1): 524-533.
Ferretti G, Scafidi D, Cutroneo L, et al. Applicability of an empirical law to predict significant sea-wave heights from microseisms along the Western Ligurian Coast (Italy)[J]. Continental Shelf Research, 2016, 122: 36-42.
Fichtner A. Source and processing effects on noise correlations[J]. Geophysical Journal International, 2014, 197(3): 1 527-1 531.
Fichtner A. Source-structure trade-offs in ambient noise correlations[J]. Geophysical Journal International, 2015, 202(1): 678-694.
Green D N, Bastow I D, Dashwood B, et al. Characterizing broadband seismic noise in central London[J]. Seismological Research Letters, 2017, 88(1): 113-124.
Hong T K, Lee J, Lee G, et al. Correlation between ambient seismic noises and economic growth[J]. Seismological Research Letters, 2020, 91(4): 2 343-2 354.
Lin J Y, Lee T C, Hsieh H S, et al. A study of microseisms induced by typhoon Nanmadol using ocean-bottom seismometers[J]. Bulletin of the Seismological Society of America, 2014, 104(5): 2 412-2 421.
Neale J, Harmon N, Srokosz M. Monitoring remote ocean waves using P wave microseisms[J]. Journal of Geophysical Research: Oceans, 2017, 122(1): 470-483. doi: 10.1002/2016JC012183.
Riahi N, Gerstoft P. The seismic traffic footprint: tracking trains, aircraft, and cars seismically[J]. Geophys Res Lett, 2015, 42(8):2 674-2 681. doi: 10.1002/2015GL063558.
Shapiro N M, Campillo M, Stehly L, et al. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 2005, 307(5715): 1 615-1 618. doi: 10.1126/science.1108339.
Sheen D H. Microseisms from huge Indian Ocean storms in May 2007[J]. Geosciences Journal, 2014, 18(3): 347-354.
Sufri O, Koper K D, Burlacu R, et al. Microseisms from Superstorm Sandy[J]. Earth and Planetary Science Letters, 2014, 402: 324-336.
Sun T H Z, Xue M, Le K P, et al. Signatures of ocean storms on seismic records in South China Sea and East China Sea[J]. Marine Geophysical Research, 2013, 34(3): 431-448.
Xiao H, Xue M, Pan M H, et al. Characteristics of microseisms in South China[J]. Bull Seismol Soc Am, 2018, 108(5A): 2 713-2 723.
Xiao H, Eilon Z C, Ji C, et al. COVID‐19 societal response captured by seismic noise in China and Italy[J]. Seismological Research Letters, 2020, 91(5): 2 757-2 768. doi: 10.1785/0220200147.
Xiao H, Tanimoto T, Xue M. Study of S-wave microseisms generated by storms in the Southeast Australia and North Atlantic[J]. Geophysical Research Letters, 2021, 48(15): e2021GL093728. doi: 10.1029/2021GL093728.
Yao H J, van der Hilst R D, De Hoop M V. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis – I. Phase velocity maps[J]. Geophysical Journal International, 2006, 166(2): 732-744.
Yao H J, van der Hilst R D. Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet[J]. Geophysical Journal International, 2009, 179(2): 1 113-1 132.
Yang Y J, Zheng Y, Chen J, et al. Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(8): Q08010. doi: 10.1029/2010GC003119.