选取上海佘山地震台阵16个子台记录的远震波形数据,采用时间域反褶积方法计算不同频率的P波接收函数,采用H-κ叠加搜索方法获取每个子台下方地壳厚度和vP/vS波速比值。研究结果显示:整个台阵下方地壳厚度和波速比值存在弱横向不均一性,其中上海佘山地区平均莫霍面深度较浅,约26.9 km;vP/vS比值较高,约1.87。采用最小二乘法联合多频率P波接收函数和瑞利频散曲线,反演上海佘山地震台阵下方地壳S波速度结构,结果显示,中地壳存在S波低速结构,与前人研究结果相一致。
In this paper, the teleseismic waveform data recorded at 16 sub-stations of the Sheshan Seismic Array in Shanghai are selected, and the time-domain deconvolution method is used to calculate the P-wave receiver functions at different frequencies, and the H-κ stacking method is used to obtain the thickness of the crust beneath each sub-station and the vP/vS ratio. The results show that there are weak lateral inhomogeneities in crustal thickness and vP/vS ratio beneath the whole array, with the average Moho surface depth in the Sheshan region of Shanghai being thin, about 26.9 km, and the vP/vS ratio being high, about 1.87. The inversion of the S-wave velocity structure of the crust beneath the Sheshan Seismic Array is performed by using the least-square method in combination with the multi-frequency P-wave receiver functions and Rayleigh dispersion curves, and the results show that there is an S-wave low-velocity structure in the middle crust, which is consistent with the results of previous studies.
2024,45(5): 20-27 收稿日期:2023-12-26
DOI:10.3969/j.issn.1003-3246.2024.05.003
基金项目:中国地震局地震科技星火计划(项目编号:XH240902A)
作者简介:贾思超(1992-),男,工程师,主要从事地球物理站网运维、地震预报工作。E-mail:jiasichaoA@163.com“
*通讯作者:”于海英(1970-),女,高级工程师,主要从事地震台网和台阵监测及数据处理研究工作。E-mail:6168658@qq.com
参考文献:
黄耘,李清河,孙业君,等. 江苏及邻区地壳上地幔结构研究[J]. 西北地震学报,2006,28(4):369-376.
靳佳琪,罗松,姚华建,等. 密集台阵背景噪声成像揭示郯庐断裂带潍坊段地壳浅层速度结构及变形特征[J]. 地球物理学报,2023,66(2):558-575.
李玲利,黄显良,姚华建,等. 合肥市地壳浅部三维速度结构及城市沉积环境初探[J]. 地球物理学报,2020,63(9):3 307-3 323.
沈旭章. 上海佘山(SSE)地震台站下方170 km深度低速界面研究[J]. 地球物理学报,2011,54(3):698-705.
Herrmann R B. Computer programs in seismology: An evolving tool for instruction and research[J]. Seism Res Lett, 2013, 84(6): 1 081-1 088.
Holbrook W S, Mooney W D, Christensen N I. The Seismic Velocity Structure of the Deep Continental Crust[M]//Fountain D M, Arculus R, Kay R. Continental Lower Crust. Amsterdam Elsevier, New York, 1992: 21-43.
Julià J, Ammon C J, Herrmann R B, et al. Joint inversion of receiver function and surface wave dispersion observations[J]. Geophysical Journal International, 2000, 143(1): 99-112.
Ligorría J P, Ammon C J. Iterative deconvolution and receiver-function estimation[J]. Bull Seismol Soc Am, 1999, 89(5): 1 395–1 400.
Ouyang L B, Li H Y, Lü Q T, et al. Crustal and uppermost mantle velocity structure and its relationship with the formation of ore districts in the Middle–Lower Yangtze River region[J]. Earth and Planetary Science Letters, 2014, 408: 378-389.
Shen W S, Ritzwoller M H, Kang D, et al. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion [J]. Geophysical Journal International, 2016, 206(2): 954-979.
Zhu L P, Kanamori H. Moho depth variation in southern California from teleseismic receiver functions[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B2): 2 969–2 980.