地幔转换区位于上、下地幔之间,作为地球内部物质循环的关键场所而被地学界长期关注。410 km和660 km间断面是地幔转换区的上下边界,对这2个间断面附近的速度结构及间断面起伏形态进行成像,有助于了解地球内部物质和能量循环。地震波三重震相对速度缓变的结构较为敏感,因而可用于直接约束间断面附近的速度结构及间断面起伏形态。本文概要介绍三重震相对地幔转换区结构的响应特征,并对三重震相波形拟合方法获得的全球多个地幔转换区的速度结构及间断面起伏特征等方面的成果进行综合分析,并据此探讨地幔转换区间断面起伏形态和俯冲滞留物质等对地幔物质组分、温度变化、地幔矿物含水量、地幔动力学过程和地球内部物质循环过程的约束能力。
The mantle transition zone is between the upper and lower mantle. As a key region for the material cycling in Earth, the mantle transition zone has long been a concern of the geoscience community. The 410 and 660 discontinuities are the upper and lower boundaries of the mantle transition zone. Imaging the velocity structure near the 410 and 660 discontinuities and the undulation pattern of the discontinuities can help to understand the cycling of materials and energy between the upper and lower mantle. Seismic triplications are sensitive to the velocity structure with slow changes. So, it can be used to directly constrain the velocity structure near the discontinuity and the undulation pattern of the discontinuity. In this paper, we briefly introduce the response characteristics of the triplications to the structure of the mantle transition zone and the research results of several mantle transition zones around the world using the triplications waveform fitting method. We discuss the ability of the mantle transition section undulations and subduction-retained materials to constrain the mantle material composition, temperature changes, mantle mineral water content, mantle dynamic processes, and the earth's internal material circulation process.
2024,45(5): 11-19 收稿日期:2024-2-28
DOI:10.3969/j.issn.1003-3246.2024.05.002
作者简介:崔冉(1995-),女,博士研究生,主要从事地球内部结构与地震波传播方面的研究。E-mail:cuiran17@mails.ucas.ac.cn“
*通讯作者:”周元泽(1972-),男,教授,主要从事地球内部结构、地震波传播及地震信号分析等教学科研工作。E-mail:yzzhou@ucas.ac.cn
参考文献:
崔辉辉,周元泽. 基于三重震相方法探测日本海俯冲区地幔转换带的速度结构[J]. 地震学报,2016,38(5):659-670.
高雅健,崔辉辉,周元泽. 中天山和塔里木盆地下方地幔转换带顶部P波速度结构探测[J]. 地球物理学报,2017,60(1):98-111.
李国辉,眭怡,周元泽. 基于P波三重震相的下扬子克拉通地幔转换带顶部低速层初探[J]. 地球物理学报,2014,57(7):2 362-2 371.
苏慧,魏荣强,周元泽,等. 东北亚边缘地区地幔过渡带内滞留太平洋板片上界面的三重震相研究[J]. 地球物理学报,2023,66(6):2 431-2 444.
眭怡,周元泽. 利用三重震相探测中国东部海域410 km深度低速层[J]. 地震学报,2015,37(1):1-14.
万柯松,倪四道,傅容珊. 欧洲南部410 km间断面的波速结构 [J]. 中国科学:地球科学,2008,38(3):327-333.
俞春泉,李娟,杨凡,等. 地幔过渡带间断面结构地震学成像研究进展[J]. 地球与行星物理论评,2023,54(3):318-338.
张瑞青,吴庆举,李永华,等. 藏西北地幔过渡带地震波速度结构研究[J]. 中国科学:地球科学,2011,41(5):700-712.
Akaogi M, Kojitani H, Morita T, et al. Low-temperature heat capacities, entropies and high-pressure phase relations of MgSiO3 ilmenite and perovskite[J]. Physics and Chemistry of Minerals, 2008, 35(5): 287-297.
Alex Song T R, Helmberger D V, Grand S P. Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States[J]. Nature, 2004, 427(6 974): 530-533.
Bina C R, Helffrich G. Phase transition Clapeyron slopes and transition zone seismic discontinuity topography[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B8): 15 853-15 860.
Chen W K, Wang D, Zhang C, et al. Estimating seismic intensity maps of the 2021 MW 7.3 Madoi, Qinghai and MWChen W P, Tseng T L. Small 660-km seismic discontinuity beneath Tibet implies resting ground for detached lithosphere[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B5): B05309.
Chu R S, Zhu L P, Ding Z F. Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms[J]. Earth and Planetary Physics, 2019, 3(5): 444-458.
Courtier A M, Bagley B, Revenaugh J. Whole mantle discontinuity structure beneath Hawaii[J]. Geophysical Research Letters, 2007, 34(17): L17304.
Cui Q H, Zhou Y Z, Liu L J, et al. The topography of the 660-km discontinuity beneath the Kuril-KaMchatka: Implication for morphology and dynamics of the northwestern Pacific slab[J]. Earth and Planetary Science Letters, 2023, 602: 117 967.
Fei Y, Van Orman J, Li J, et al. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B2): B02305.
Frost D J. The Upper mantle and transition zone[J]. Elements, 2008, 4(3): 171-176.
Helffrich G R, Wood B J. The earth’s mantle[J]. Nature, 2001, 412(6 846): 501-507.
Irifune T, Higo Y, Inoue T, et al. Sound velocities of majorite garnet and the composition of the mantle transition region[J]. Nature, 2008, 451(7 180): 814-817.
Katsura T, Ito E. The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B11): 15 663-15 670.
Katsura T, Yamada H, Nishikawa O, et al. Olivine-wadsleyite transition in the system (Mg-Fe)2SiO4[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B2): B02209.
Kennett B L N, Engdahl E R. Traveltimes for global earthquake location and phase identification[J]. Geophysical Journal International, 1991, 105(2): 429-465.
Lai Y J, Chen L, Wang T, et al. Mantle transition zone structure beneath Northeast Asia from 2-D triplicated waveform modeling: Implication for a segmented stagnant slab[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(2): 1 871-1 888.
Li G H, Gao Y, Zhou Y Z, et al. A low-velocity layer atop the mantle transition zone beneath the western Central Asian Orogenic Belt: Upper mantle melting induced by ancient slab subduction[J]. Earth and Planetary Science Letters, 2022, 578: 117 287.
Li G H, Li Y E, Zhang H, et al. Detection of a thick and weak low-velocity layer atop the mantle transition zone beneath the Northeastern South China Sea from triplicated P-wave waveform modeling[J]. Bulletin of the Seismological Society of America, 2019, 109(4): 1 181-1 193.
Li G H, Zhou Y Z, Bai L, et al. Upper mantle melt caused by a subducted slab in the Indian-Eurasian continental subduction zone[J]. Communications Earth & Environment, 2023, 4(1): 455.
Li J, Wang X, Wang X J, et al. P and SH velocity structure in the upper mantle beneath Northeast China: Evidence for a stagnant slab in hydrous mantle transition zone[J]. Earth and Planetary Science Letters, 2013, 367: 71-81.
Litasov K D, Ohtani E, Sano A, et al. Wet subduction versus cold subduction[J]. Geophysical Research Letters, 2005, 32(13): L13312.
Muir J M R, Zhang F W, Brodholt J P. The effect of water on the post-spinel transition and evidence for extreme water contents at the bottom of the transition zone[J]. Earth and Planetary Science Letters, 2021, 565: 116 909.
Niazi M, Anderson D L. Upper mantle structure of western North America from apparent velocities of P waves[J]. Journal of Geophysical Research, 1965, 70(18): 4 633-4 640.
Obayashi M, Sugioka H, Yoshimitsu J, et al. High temperature anomalies oceanward of subducting slabs at the 410-km discontinuity[J]. Earth and Planetary Science Letters, 2006, 243(1/2): 149-158.
Sinogeikin S V, Bass J D, Katsura T. Single-crystal elasticity of ringwoodite to high pressures and high temperatures: Implications for 520 km seismic discontinuity[J]. Physics of the Earth and Planetary Interiors, 2003, 136(1/2): 41-66.
Smyth J R, Jacobsen S D. Nominally anhydrous minerals and earth’s deep water cycle[M]//Jacobsen S D, Van Der Lee S. Earth’s Deep water Cycle, American Geophysical Union, 2006: 1-11.
Tajima F, Grand S P. Evidence of high velocity anomalies in the transition zone associated with Southern Kurile subduction zone[J]. Geophysical Research Letters, 1995, 22(23): 3 139-3 142.
Tajima F, Katayama I, Nakagawa T. Variable seismic structure near the 660 km discontinuity associated with stagnant slabs and geochemical implications[J]. Physics of the Earth and Planetary Interiors, 2009, 172(3/4): 183-198.
Tseng T L, Chen W P. Discordant contrasts of P- and S-wave speeds across the 660-km discontinuity beneath Tibet: A case for hydrous remnant of sub-continental lithosphere[J]. Earth and Planetary Science Letters, 2008, 268(3/4): 450-462.
Wang X R, Li Q S, Li G H, et al. Seismic triplication used to reveal slab subduction that had disappeared in the late Mesozoic beneath the northeastern South China Sea[J]. Tectonophysics, 2018, 727: 28-40.
Wang Y, Wen L X, Weidner D, et al. SH velocity and compositional models near the 660-km discontinuity beneath South America and northeast Asia[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B7): B07305.
Xu W B, Lithgow-Bertelloni C, Stixrude L, et al. The effect of bulk composition and temperature on mantle seismic structure[J]. Earth and Planetary Science Letters, 2008, 275(1/2): 70-79.