地球磁场短期内是稳定的,但其长期累积变化显著,对人类生存环境将产生深刻影响。采用主磁场模型IGRF,计算1590—2023年中国省会城市地磁场参数,进而分析其变化规律,得出以下结论:①在全国范围内,磁倾角持续增大约15°—17°,即磁化方向变得更加陡立。②中国东西方向横跨东经75°—135°,磁偏角有3种类型,即:西部磁偏角由西向东偏转,最大幅度约19°;中部磁偏角左右晃动,增幅较小,最大幅度约4°;东部磁偏角由东向西偏,最大幅度约12°。③地磁总场由南到北同时增大,其中:北部增幅较小,约4 000—5000 nT;中部和南部增幅较大,约6 000—8 000 nT,且以西安地区为中心。④由上述磁参数变化推测,地球磁北极正沿约97°W—100°E的经度带向中国境内西安地区快速移动。⑤地球磁场的持续增大,可能对电离层分布产生影响,进而对通讯、气候及其他方面造成影响。
The Earth's magnetic field is stable in the short term, but in the long run, the accumulation will change more and more, and the results will have a profound impact on the living environment of human beings. In this paper, the main magnetic field model, IGRF, is used to calculate the geomagnetic field parameters of China's provincial capitals from 1590 to 2023, and then their variation rules are analyzed. The following conclusions are obtained:① The magnetic inclination angle continues to increase by about 15°-17° in the whole country, that is, the magnetization direction becomes steeper.② The east-west direction of China spans 75°-135°E, and the magnetic declination angle variation is divided into three types, the western magnetic declination angle is deflected from west to east, with a maximum amplitude of 19°, the magnetic declination angle in the middle of the country sways left and right, and the increase is small, with a maximum amplitude of 4°, and the eastern magnetic declination angle is deviated from east to west, with a maximum amplitude of 12°. ③ The total geomagnetic field increases from south to north at the same time, with a small increase of about 4 000 -5 000 nT in the north and a large increase of about 6 000-8 000 nT in the central and southern regions, and is centered in Xi'an. ④ Based on the analysis of geomagnetic parameter variations, it can be inferred that the Earth's magnetic north pole is migrating rapidly toward Chinese territory along the 97°W-100°E longitudinal band. ⑤ The continuous increase of the Earth's magnetic field may affect the ionosphere distribution, and then affect communication, climate, and other aspects.
2025,46(2): 164-172 收稿日期:2024-10-28
DOI:10.3969/j.issn.1003-3246.2025.02.019
基金项目:紫金矿业集团有限公司资助项目(项目编号:1101-ZC-2023-00212)
作者简介:贺梅艳(2003—),女,在读本科生,所学专业:地球物理学。E-mail:1556422718@qq.com
*通讯作者:强建科(1967—),男,教授,主要从事地球物理理论及应用的教学与研究。E-mail:qiangjianke@163.com
参考文献:
高晓清,柳艳香,董文杰,等.地磁场与气候变化关系的新探索[J].高原气象,2002,21(4):395-401.
郭斐,邱耀东,王正涛.地磁场长期变化特征及倒转趋势预测[C]//中国惯性技术学会高端前沿专题学术会议—钱学森讲坛:天空海一体化水下组合导航会议论文集. 北京:钱学森空间技术实验室,中国惯性技术学会天空海一体化导航与探测专业委员会,中国电子学会敏感技术分会空间与水下应用传感器技术专业委员会,2017:15.
郭凤霞,张义军,言穆弘.地磁场长期变化特征及机理分析[J].地球物理学报,2007,50(6):1 649-1 657.
李红梅. 地磁暴、太阳耀斑,会有什么影响?[N]. 人民日报,2024-05-13(13).
李雨淙,於益群,员昊辰,等.地磁扰动的时空变化规律和产生原因:统计和模拟研究[J].地球物理学报,2023,66(9):
3 591-3 609.
乔玉坤,张金生,张琪,等.地磁场变化对地磁导航影响的分析及仿真[C]//刘代志,国家安全地球物理丛书(八)——遥感地球物理与国家安全.西安:西安地图出版社,2012:277-285.
王月华. 地球磁场的全球变化特征[J]. 地球物理学进展,1999,14(3):115-121.
王泽忠,余华兵,潘超,等.磁暴期间中低纬度地区地磁场变化率的规律[J].科技导报,2013,31(Z2):74-80.
吴婧怡. 如何在中国看见极光[J]. 科学大观园,2024,(2):70-71.
徐文耀,Henri-Claud Nataf,魏自刚,等.地磁场长期变化速率的30年周期[J].地球物理学报,2006,49(5):1 329-1 338.
徐文耀.地磁场能量在地球内部的分布及其长期变化[J].地球物理学报,2001,44(6):747-753.
杨小强,阳杰,苏志华.全新世以来东亚热带区域气候记录与地球磁场长期变化[C]//中国地球物理·2009.合肥:中国地球物理学会,2009:406.
于文强,李厚朴,刘敏,等.基于混沌理论、变分模态分解和长短期记忆网络的地磁变化预测方法[J].地震学报,2024,46(1):92-105.
中国新闻社. 黑龙江漠河2024年5月极光图[EB/OL]. (2024-05-11)[2024-09-11]. https://commons.wikimedia.org/wiki/File:May_2024_Aurora_at_Mohe,_Heilongjiang.png(CC-BY-3.0<https://creativecommons.org/licenses/by/3.0>,原始视频: https://www.youtube.com/watch?v=N36Tymqi9vo)
Arneitz P, Leonhardt R, Egli R, et al. Dipole and nondipole evolution of the historical geomagnetic field from instrumental, archeomagnetic, and volcanic data[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(10): e2021JB022565.
Aubert J, Finlay C C, Fournier A. Bottom-up control of geomagnetic secular variation by the Earth’s inner core[J]. Nature, 2013, 502(7470): 219-223.
Backus G, Parker R L, Constable C. Foundations of geomagnetism[M]. Cambridge: Cambridge University Press, 1996.
Biggin A J, Steinberger B, Aubert J, et al. Possible links between long-term geomagnetic variations and whole-mantle convection processes [J]. Nature Geoscience, 2012, 5(8): 526-533.
Christensen U R, Wicht J. Numerical dynamo simulations[J]. Core Dynamics, 2007, 8: 245-282.
Christensen U, Olson P, Glatzmaier G A. Numerical modelling of the geodynamo: a systematic parameter study[J]. Geophysical Journal International, 1999, 138(2): 393-409.
Chulliat A, Brown W, Alken P, et al. The US/UK world magnetic model for 2020-2025: Technical report[R]. Great Britain: National Centers for Environmental Information, 2020.
Cnossen I, Richmond A D. Changes in the Earth’s magnetic field over the past century: Effects on the ionosphere‐thermosphere system and solar quiet (Sq) magnetic variation[J]. Journal of Geophysical Research: Space Physics, 2013, 118(2): 849-858.
Courtillot V, Le Mouel J L, Ducruix J, et al. Geomagnetic secular variation as a precursor of climatic change[J]. Nature, 1982, 297(5865): 386-387.
Davies C J, Constable C G. Rapid geomagnetic changes inferred from Earth observations and numerical simulations[J]. Nature communications, 2020, 11(1): 3 371.
Elias A G, Zossi B S, Yiğit E, et al. Earth’s magnetic field effect on MUF calculation and consequences for hmF2 trend estimates[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 163: 114-119.
Eyfrig R W. The effect of the magnetic declination on the F2 layer[J]. Journal of Geophysical Research, 1963, 68(9): 2 529-2 530.
Jackson A, Jonkers A R T, Walker M R. Four centuries of geomagnetic secular variation from historical records[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2000, 358(1768): 957-990.
Lastovicka J. Monitoring and forecasting of ionospheric space weather—effects of geomagnetic storms[J]. Journal of atmospheric and solar-terrestrial physics, 2002, 64(5/6): 697-705.
Livermore P W, Finlay C C, Bayliff M. Recent north magnetic pole acceleration towards Siberia caused by flux lobe elongation[J]. Nature Geoscience, 2020, 13(5): 387-391.
Roberts P H, Glatzmaier G A. Geodynamo theory and simulations[J]. Reviews of modern physics, 2000, 72(4): 1 081.
Team N G M, Survey B G. World magnetic model 2020[R]. Technical report, NOAA National Centers for Environmental Information, 2019.