激光干涉绝对重力仪是直接测量地球重力场重力加速度绝对值的精密仪器,其中隔振系统的零点漂移是影响仪器长期稳定运行的关键技术环节。基于STM32单片机加调零电机机构,提出一种可实现激光干涉绝对重力仪隔振系统零点自动调节的技术方案。在实际测量过程中,STM32单片机通过USB接口与上位机通信,实时获取隔振系统零点位置,通过两路继电器驱动电路控制调零电机正反转,从而实现对隔振系统的零点控制,并与Tide型激光干涉绝对重力仪完成联合调试。实测结果表明,该系统通过对隔振系统零点位置的自动调节,可保证绝对重力仪长期、稳定地进行测点绝对重力值的高精度测量,整机连续测量20天,测量数据准确度优于10 μGal,精度优于10 μGal,为仪器开展台站连续观测提供了技术保障。
Laser interferometric absolute gravimeter is a precision instrument that directly measures the absolute value of gravity acceleration in the Earth's gravity field. The zero drift of the isolation system is a key technical link that affects the long-term stable operation of the instrument. This article proposes a technical scheme for automatic zero adjustment of the isolation system of the laser interferometric absolute gravimeter based on the STM32 microcontroller and the zero-adjustment motor mechanism. In the actual measurement process of the absolute gravimeter, the STM32 microcontroller communicates with the upper computer via a USB interface to obtain the zero-point position of the isolation system in real-time. Through two relay drive circuits, the zero-adjustment motor is controlled to achieve zero-point control of the isolation system through forward and reverse rotation, and joint debugging is completed with the Tide type laser interferometric absolute gravimeter. The actual test results show that the system ensures the long-term and stable high-precision measurement of absolute gravity values at measurement points by automatically adjusting the zero position of the isolation system. The continuous measurement time of the entire machine is 20 days, and the accuracy of the measurement data is better than 10 μGal, with an accuracy better than 10 μGal. This provides technical support for the instrument to carry out continuous observation at stations.
2025,46(2): 147-155 收稿日期:2024-9-23
DOI:10.3969/j.issn.1003-3246.2025.02.017
作者简介:李子路(1999—),男,硕士研究生,主要从事激光干涉绝对重力仪隔振技术研究。E-mail:1624285904@qq.com
*通讯作者:吴琼(1980—),男,研究员,主要从事激光干涉绝对重力测量、重力梯度测量和相对重力测量仪器的研发与应用。E-mail:wuqiong@cea-igp.ac.cn
参考文献:
邓友茂,王振亮,丁卫忠. CG-5重力仪零漂稳定性评估[J]. 大地测量与地球动力学,2018,38(11):1 207-1 210.
郭有光,李德禧,黄大伦,等. 高精度绝对重力仪观测研究[J]. 地球物理学报,1990,33(4):447-453
何志堂,韩宇飞,康胜军,等. A10/028与FG5绝对重力仪比对测量试验[J]. 大地测量与地球动力学,2014,34(3):142-145
李红雨,曹诚,李凤婷,等. 航空、航海重力和重力梯度在海洋、未知陆地战略勘探的发展[J]. 地球物理学进展,2019,34(1):316-325.
滕云田,吴琼,郭有光,等. 基于激光干涉的新型高精度绝对重力仪[J]. 地球物理学进展,2013,28(4):2 141-2 147.
吴鹏飞,胡国庆,杜瑞林. DZW型重力仪自动调零装置的原理和设计[J]. 大地测量与地球动力学,2009,29(2):146-148.
吴琼,滕云田,黄大伦,等. 绝对重力仪研制中一种新的自由落体轨迹重建算法[J]. 地震学报,2012,34(4):549-556.
尹伟言,周睿,田源,等. 航空重力测量的空中数据处理与分析[J]. 测绘与空间地理信息,2021,44(10):196-199.
张向宇,关永贤,王劲松. 远海测量重力仪漂移量估测方法研究[J]. 海洋测绘,2020,40(1):66-68.
Lerch F J, Marsh J G, Klosko S M, et al. An improved error assessment for the GEM T1 gravitational model[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B12): 20 023-20 040.
Nabighian M N, Ander M E, Grauch V J S, et al. Historical development of the gravity method in exploration[J]. Geophysics, 2005, 70(6): 63ND-89ND.
Okubo S, Yoshida S, Sato T, et al. Verifying the precision of a new generation absolute gravimeter FG5— Comparison with superconducting gravimeters and detection of oceanic loading tide[J]. Geophysical research letters, 1997, 24(4): 489-492.
Raja P, Wang X J, Gordaninejad F. A high-force controllable MR fluid damper-liquid spring suspension system[J]. Smart Materials and Structures, 2014, 23(1): 015021.
Xu J X, Feng J Y, Wang Q Y, et al. The determination of gravitational acceleration in the joule balance at NIM[J]. Metrologia, 2020, 57(4): 045013.
Zhang Y, Chen S, Xing L L, et al. Gravity changes before and after the 2008 MW 7.9 Wenchuan earthquake at Pixian absolute gravity station in more than a decade[J]. Pure and Applied Geophysics, 2020, 177(1): 121-133.