为探究煤矿区域背景噪声特征,采集红庆河煤矿某工作面上方观测数据及东胜地震台波形数据,通过计算速度均方根值、加速度功率谱密度和功率谱概率密度函数,对比分析红庆河煤矿区域背景噪声特征。研究结果表明,煤矿区域背景噪声水平接近Ⅰ级标准,相比市区干扰源更少,适合布设地震监测台网,而东胜地震台距市区更近,噪声干扰源更多;煤矿区域主要噪声来源是附近草场牛羊群活动、风尘天气、牧民驾驶交通工具以及煤矿开采活动等,高频背景噪声主要来自人类活动。为降低背景噪声干扰,减少风沙和温度等因素对背景噪声的影响,煤矿地震监测台网需布设在远离公路、村镇建筑等区域,并综合考虑采用浅井式方法布设仪器,在仪器安装过程中使用保温罩等措施。短周期地震仪频带范围可满足煤矿区域地震监测需求,具有经济实惠、抗干扰能力强、易于部署和维护等优点,适合用于煤矿区域地震监测。
To investigate the background noise characteristics of the coal mine area, the observation data above a working face of Hongqinghe coal mine and the waveform data of Dongsheng seismic station are collected, and the background noise characteristics of the Hongqinghe coal mine area are compared and analyzed by calculating the root-mean-square value of the velocity, the acceleration power spectral density, and the probability density function of the power spectra. The results show that the background noise level in the coal mine area is close to the Class I standard. Compared with the urban area, the coal mine area has fewer interference sources and is suitable for deploying the seismic monitoring network. The Dongsheng Seismic Station is closer to the urban area, and there are more sources of noise interference. The main sources of noise in the coal mine area are the activities of cattle and sheep herds in the nearby pasture, wind and dust weather, herdsmen's driving vehicles, and coal mining activities, etc., and the high-frequency background noise mainly comes from human activities. To reduce the background noise interference and the influence of wind, sand, and temperature on the background noise, the coal mine seismic monitoring network needs to be deployed in areas far away from highways, village, and town buildings, etc., and comprehensively consider the use of a shallow-well method of instrument deployment, and the use of thermal insulation covers and other measures during the installation of the instruments. The frequency band range of short-period seismometers can meet the demand of seismic monitoring in coal mine areas, and they have the advantages of being economical, strong anti-interference ability, easy to deploy and maintain, etc., which are suitable for seismic monitoring in coal mine areas.
2025,46(2): 82-90 收稿日期:2024-11-5
DOI:10.3969/j.issn.1003-3246.2025.02.009
基金项目:内蒙古自治区地震局局长基金(项目编号:2024QN14)
作者简介:刘元康(1997—),男,助理工程师,主要从事地震监测工作。E-mail:1308090320@qq.com
参考文献:
孙卓越. 红庆河煤矿煤体动态力学特性试验研究[D]. 北京:煤炭科学研究总院,2021.
中国地震局监测预报司. 测震学原理与方法[M]. 北京:地震出版社,2017.
廖诗荣,陈绯雯. 应用概率密度函数方法自动处理地震台站勘选测试数据[J]. 华南地震,2008,28(4):82-92.
杨千里,郝春月,田鑫. 新疆和田台阵PSD与PDF分析[J]. 地球物理学报,2019,62(7):2 591-2 606.
陈建涛,谢剑波,吕仲杭,等. 基于PPSD方法的广东阳江小孔径井下型地震监测台阵环境地噪声计算与分析[J]. 华北地震科学,2019,37(2):21-29.
胡宝慧,张浩,教智博,等. 地震台站噪声水平和台网监测能力自动化程序的实现[J]. 防灾减灾学报,2022,38(3):42-47.
颜杰,张立树,洪鹤庭,等. 背景噪声和密集台阵成像技术在哈尔乌素露天煤矿采空区的应用[J]. CT理论与应用研究,2023,32(4):461-470.
安全,韩晓明,刘甜甜,等. 西拉木伦断裂带东沿背景噪声特征分析[J]. 地震工程学报,2022,44(4):936-944.
Peterson J R. Observations and Modeling of Seismic Background Noise[R]. Reston: USGS Open File Report, 1993: 1-42.
McNamara D E, Buland R P. Ambient Noise Levels in the Continental United States [J]. Bulletin of the Seismological Society of America, 2004, 94(4): 1 517-1 527.
Rastin S J, Unsworth C P, Gledhill K R, et al. A detailed noise characterization and sensor evaluation of the North Island of New Zealand using the PQLX data quality control system[J]. Bulletin of the Seismological Society of America, 2012, 102(1): 98-113.
Green D N, Bastow I D, Dashwood B, et al. Characterizing broadband seismic noise in Central London[J]. Seismological Research Letters, 2017, 88(1): 113-124.