作为地球的“姊妹星”,金星在体积、密度和表面重力等物理特性上与地球相似,但其地质构造和内部演化却显著不同。整理金星探测的历史资料和当前研究成果,对金星的地质构造、内部演化及大气环境等研究进展进行综合分析,梳理其在大气与气候、地表地貌、内部构造、磁场与等离子体环境以及探测技术应用等方面尚未解决的科学问题,旨在通过比较金星与地球的异同,深化对行星内部结构和表面特征多样性形成机制的认识,为预测地球未来地质变化和寻找宜居行星提供关键线索。随着金星的研究热度逐渐回升,美国、俄罗斯以及欧洲等国家和地区制定了相对应的金星探测任务,有针对性地攻克上述问题。为抢占未来金星研究高地,未来探测任务将分阶段制定探测战略,综合采用遥感观测、下降探测和样品返回等多种探测手段,重点研究金星的大气成分、地质构造、地貌特征以及潜在生命迹象,以进一步揭示行星演化路径的多样性,为地球未来环境变化提供科学依据。
Venus, as the "sister star" of Earth, shares similar physical characteristics with Earth, including volume, density, and surface gravity, but its geological structure and internal evolution are significantly different. Using the historical data of Venus exploration and current research results, we have conducted a comprehensive analysis of the progress of research on the geology, internal evolution and atmospheric environment of Venus, and sorted out the unsolved scientific problems in atmosphere and climate, surface geomorphology, internal structure, magnetic field and plasma environment, and the application of exploration technology, etc. By comparing the similarities and differences between Venus and Earth, we aim to deepen our understanding of the planetary internal structure and the formation mechanism of the diverse internal structures and surface features of the planets and to provide key clues for predicting future geologic changes on Earth and searching for habitable planets. With the gradual recovery of research on Venus, the United States, Russia, Europe, and other countries and regions have formulated corresponding Venus exploration missions to tackle the above problems in a targeted manner. To seize the future highland of Venus research, future exploration missions will formulate exploration strategies in phases, and comprehensively adopt a variety of exploration means, such as remote sensing observation, descent detection and sample return, focusing on the study of Venus's atmospheric composition, geological structure, geomorphological features, and potential signs of life, to further reveal the diversity of the planet's evolution paths, and to provide the scientific basis for the Earth's future environmental changes.
2025,46(2): 1-22 收稿日期:2024-8-20
DOI:10.3969/j.issn.1003-3246.2025.02.001
基金项目:自然基金面上项目(项目编号:41774085);中国地震局地球物理研究所基本科研业务费专项(项目编号:DQJB24X25)
作者简介:张曦文(2000—),女,硕士研究生,主要从事地磁数据处理和空间天气事件研究等工作。E-mail:923402625@qq.com
*通讯作者:李琪(1975—),女,研究员,主要从事空间天气和震磁关系方面的研究。E-mail:darcyli@163.com
参考文献:
陈乐,张少兵,余金霏. 金星:认识早期地球的窗口[J]. 地球与行星物理论评,2022,53(1):66-84.
侯建文,阳光,冯建军. 深空探测:金星探测[M]. 北京:国防工业出版社,2015.
杨安,相松,黄金水. 金星内部结构与动力学研究进展[J]. 地球科学进展,2020,35(9):912-923.
赵宇鴳,刘建忠,邹永廖,等. 金星探测研究进展与未来展望[J]. 地质学报,2021,95(9):2 703-2 724.
Antonita M T M, Das P T D, Kumar Praveen K K. Overview of ISRO's future Venus orbiter mission[C]//Proceedings of the 44th COSPAR Scientific Assembly, 16-24 July 2022, Athens. Session B4.1 Venus science and exploration. 2022.
Beauchamp P, Gilmore M S, Lynch R J, et al. Venus flagship mission concept:a decadal survey study[C]//Proceedings of 2021 IEEE Aerospace Conference. Big Sky:IEEE, 2021:1-18.
Canup R M. Simulations of a late lunar-forming impact[J]. Icarus, 2004, 168(2):433-456.
Catling D C, Zahnle K J. The archean atmosphere[J]. Science Advances, 2020, 6(9):eaax1420.
Correia A C, Laskar J. The four final rotation states of Venus[J]. Nature, 2001, 411:767-770.
Cutts J. Venus technology plan[R]. Washington, DC:National Aeronautics and Space Administration, 2019:1-28.
Davis A M. Treatise on geochemistry:meteorites, comets, and planets[M]. Amsterdam:Elsevier, 2005:487-507.
Drossart P, Piccioni G, Gérard J C, et al. A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express[J]. Nature, 2007, 450(7170):641-645.
Drossart P, Montmessin F. The legacy of Venus Express:highlights from the first European planetary mission to Venus[J]. The Astronomy and Astrophysics Review, 2015, 23(1):5.
Esposito L W. SAGE new frontiers mission to Venus[C]//Proceedings of the 42nd Lunar and Planetary Science Conference. The Woodlands, Texas:LPI, 2011.
Esposito L W, Atkinson D H, Baines K H, et al. The New Frontiers Venus in situ atmospheric and geochemical explorer (VISAGE) mission proposal[C]//European Planetary Science Congress 2017. EPSC2017-275-1.
European Space Agency (ESA). EnVision assessment study report[R]. Yellow Book, ESA/SCI(2021)1ESA. 2021:1-111. Available at:https://sci.esa.int/documents/34375/36249/EnVision_YB_final.pdfGarvin J B, Getty S A, Arney G N, et al. Revealing the mysteries of Venus:the DAVINCI mission[J]. Planet Sci J, 2022, 3(5):117.
Gilmore M S, Glaze L S, Baker C L, et al. Venus Intrepid Tessera Lander:mission concept. Study report to the NRC Decadal Survey Inner Planets Panel[R]. 2010. Available at:https://ia800304.us.archive.org/35/items/VenusIntrepidTesseraLanderConceptStudy/03_Venus_Intrepid_Tessera_Lander.pdf Glaze L, Garvin J, Johnson N, et al. VICI:Venus in situ composition investigations[C]//Proceedings of the European Planetary Science Congress. Riga:EPSC, 2017.
Glaze L S, Baker C, Adams M, et al. Venus mobile explorer:mission concept study report to the NRC decadal survey inner planets panel[EP/OL]. 2009. https://www.lpi.usra.edu/vexag/documents/reports/VME_FINAL_ITAR_Compliant.pdf
Glaze L S, Wilson C F, Zasova L V, et al. Future of Venus research and exploration[J]. Space Sci Rev, 2018, 214(5):89. doi:10.1007/s11214-018-0528-z.
Grinspoon D, Pavlov A, Adams M. Venus climate mission VCM[EP/OL]. 2010. https://funkyscience.net/wp-content/uploads/2012/09/Venus_Climate_Mission.pdf.
Harper C L Jr, Jacobsen S B. Evidence for 182Hf in the early Solar System and constraints on the timescale of terrestrial accretion and core formation[J]. Geochim Cosmochim Acta, 1996, 60(7):1 131-1 153. doi:10.1016/0016-7037(96)00027-0.
Hirschmann M M. Water, melting, and the deep Earth H2O cycle[J]. Annu Rev Earth Planet Sci, 2006, 34:629-653. doi:10.1146/annurev.earth.34.031405.125211.
Höink T, Lenardic A, Richards M. Depth-dependent viscosity and mantle stress amplification:implications for the role of the asthenosphere in maintaining plate tectonics[J]. Geophysical Journal International, 2012, 191(1):30-41.
Horinouchi T, Murakami S Y, Satoh T, et al. Equatorial jet in the lower to middle cloud layer of Venus revealed by Akatsuki[J]. Nature Geoscience, 2017, 10:798-798.
Huang J S, Yang A, Zhong S J. Constraints of the topography, gravity and volcanism on Venusian mantle dynamics and generation of plate tectonics[J]. Earth and Planetary Science Letters, 2013, 362:207-214.
Imamura T, Mitchell J, Lebonnois S, et al. Superrotation in planetary atmospheres[J]. Space Sci Rev, 2020, 216(5):87. doi:10.1007/s11214-020-00703-9.
Ivanov B A, Basilevsky A T, Kryuchkov V P, et al. Impact craters of Venus:analysis of Venera 15 and 16 data[J]. J Geophys Res:Solid Earth, 1986, 91(b4):413-430. doi:10.1029/JB091iB04p0D413.
Ivanov M A, Head J W. Global geological map of Venus[J]. Planetary and Space Science, 2011, 59(13):1 559-1 600.
Kiefer W S, Hager B H. A mantle plume model for the equatorial highlands of Venus[J]. Journal of Geophysical Research:Planets, 1991, 96(E4):20 947-20 966.
Krasnopolsky V A. High-resolution spectroscopy of Venus:detection of OCS, upper limit to H2S, and latitudinal variations of CO and HF in the upper cloud layer[J]. Icarus, 2008, 197(2):377-385.
Krasnopolsky V A. Vertical profiles of H2O, H2SO4, and sulfuric acid concentration at 45-75 km on Venus[J]. Icarus, 2015, 252:327-333.
Landis G A. Power systems for Venus surface missions:a review[J]. Acta Astronautica, 2021, 187:492-497.
Lange R A. The effect of H2O, CO2 and F on the density and viscosity of silicate melts[M]//Carroll M R, Holloway J R. Volatiles in Magmas. Berlin, Boston:De Gruyter, 1994:331-370. doi:10.1515/9781501509674-015.
Lee D C, Halliday A N. Hafnium-tungsten chronometry and the timing of terrestrial core formation[J]. Nature, 1995, 378(6559):771-774. doi:10.1038/378771a0.
Limaye S S, Garvin J B. Exploring Venus:next generation missions beyond those currently planned[J]. Front Astron Space Sci, 2023, 10:1188096. doi:10.3389/fspas. 2023.1188096.
Nakamura M, Imamura T, Ishii N, et al. Overview of Venus orbiter, Akatsuki[J]. Earth Planets Space, 2011, 63(5):443-457.
Ohtani E. The role of water in Earth's mantle[J]. Natl Sci Rev, 2020, 7(1):224-232. doi:10.1093/nsr/nwz071.
Richards M A, Yang W S, Baumgardner J R, et al. Role of a low-viscosity zone in stabilizing plate tectonics:implications for comparative terrestrial planetology[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(8):2000GC000115.
Sagdeev R Z, Linkin V M, Kerzhanovich V V, et al. Overview of VEGA Venus balloon in situ meteorological measurements[J]. Science, 1986, 231(4744):1 411-1 414.
Sánchez-Lavega A, Lebonnois S, Imamura T, et al. The atmospheric dynamics of Venus[J]. Space Science Reviews, 2017, 212(3):1 541-1 616.
Shirley D L. The mariner 10 mission to Venus and mercury[J]. Acta Astronautica, 2003, 53(4/10):375-385.
Smrekar S, Hensley S, Nybakken R, et al. VERITAS (Venus emissivity, radio science, InSAR, topography, and spectroscopy):a discovery mission[C]//Proceedings of 2022 IEEE Aerospace Conference. Big Sky:IEEE, 2022:1-20. doi:10.1109/AERO53065.2022.9843269.
Smrekar S E, Stofan E R. Venus:surface and interior[M]//McFadden L A, Weissman P R, Johnson T V. Encyclopedia of the Solar System. 2nd ed. Amsterdam:Academic Press, 2007:168.
Smrekar S E, Stofan E R, Mueller N, et al. Recent hotspot volcanism on Venus from VIRTIS emissivity data[J]. Science, 2010, 328(5978):605-608. doi:10.1126/science.1186785.
Smrekar S E, Davaille A, Sotin C. Venus interior structure and dynamics[J]. Space Science Reviews, 2018, 214(5):88.
Smrekar S, Dyar D, Helbert J, et al. VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, And Spectroscopy):A Proposed Discovery Mission[C]//Proceedings of the 14th European Planetary Science Congress, 21 September-9 October 2020, held virtually. 2020. id. EPSC2020-447. doi:10.5194/epsc2020-447
Sossi P A, Burnham A D, Badro J, et al. Redox state of Earth's magma ocean and its Venus-like early atmosphere[J]. Science Advances, 2020, 6(48):eabd1387.
Taylor F W. The scientific exploration of Venus[M]. New York:Cambridge University Press, 2014:1-314.
Taylor F W, Svedhem H, Head J W. Venus:the atmosphere, climate, surface, interior and near-space environment of an Earth-like planet[J]. Space Science Reviews, 2018, 214(1):35.
Taylor S R, McLennan S M. Planetary crusts:their composition, origin and evolution[M]. Cambridge:Cambridge University Press, 2009:1-402.
Titov D V, Ignatiev N I, McGouldrick K, et al. Clouds and hazes of Venus[J]. Space Science Reviews, 2018, 214(8):126. doi:10.1007/s11214-018-0552-z.
Wilson C F, Widemann T, Ghail R. Venus:key to understanding the evolution of terrestrial planets[J]. Exp Astron, 2022, 54(2/3):575-595. doi:10.1007/s10686-021-09766-0.
Zasova L V, Moroz V I, Formisano V, et al. Exploration of Venus with the Venera-15 IR Fourier spectrometer and the Venus Express planetary Fourier spectrometer[J]. Cosmic Research, 2006, 44(4):349-363.
Zasova L V, Gorinov D A, Eismont N A, et al. Venera-D:a design of an automatic space station for Venus exploration[J]. Sol Syst Res, 2019, 53(7):506-510. doi:10.1134/S0038094619070244.
Zhang T L, Delva M, Baumjohann W, et al. Induced magnetosphere and its outer boundary at Venus[J]. Journal of Geophysical Research:Planets, 2008, 113(E9):E00B20.